m6米乐主页·2016年人工智能领域的总结与思考:未来将面临的五

来源:m6米乐网页版 作者:m6米乐平台网址

发布时间:2024-11-23 09:37:13

  每当一个事物兴起的时候,随之而来的就是大量的观点与推测,其中最受欢迎的往往是那些最大胆的;而后每增加一个论据,都会让我们对这个观点更加深信无疑。就像从Alpha Go战胜李世石后,人工智能在中强势回暖,而后李彦宏在世界互联网大会上的言论,也再度加强了人们对它的关注。

  不仅百度,马化腾在2015年6月的演讲中也说道:人工智能是我最想做的事情。马云也在2015年5月内部信中写道:未来三十年云计算、大数据、人工智能等技术将会让无数的梦想成真。

  目前国际互联网巨头纷纷入场, 亚马逊的 Alexa、苹果的 Siri、微软的 Cortana,作为人工智能的第一块敲门砖,已经被较为广泛的使用;搜索、翻译、地图、无人车,深度学习的影子无处不在,人工智能正在重构人类的生活。

  1)数据量: 2000年至今,互联网及移动互联网的高速发展使得数据实现了量的积累,据IDC预测,2020年全球的大数据总量将为40ZB,其中有七成将会以图片和视频的形式进行存储,这为人工智能的发展提供了丰厚的土壤。

  2)深度学习算法:多伦多大学教授Geoffrey Hinton(致力于神经网络和深度学习研究)的学生在业内知名的图像识别比赛ImageNet中利用深度学习的算法将识别错误率一举降低了10%,甚至超过了谷歌,深度学习进而名声大噪。2015年,微软亚洲研究院视觉计算组在该项比赛中夺冠,将系统错误率降低至3.57%,已经超过了人眼。

  3)高性能计算:GPU响应速度快、对能源需求低,可以平行处理大量琐碎信息,并在高速状态下分析海量数据,有效满足人工智能发展的需求。

  4)基础设施成本:云计算的普及和GPU的广泛使用,极大提升了运算效率,也在一定程度上降低了运营成本。IDC报告显示,数据基础设施成本正在迅速下降,从2010年的每单位9美元下降到了2015年的0.2美元。

  与此同时,巨头和创业公司也相继投入资源和成本进行商业化探索,但技术本身尚有足够大的成长空间,当前仍处于早期阶段。

  在极客帮创投创始合伙人蒋涛看来,大公司在这三个层面赢家通吃,而小公司只能依靠单点突破,以及在传统行业优势上进行突围。

  大公司(100亿市值以上)的主战场在于争夺未来人工智能的制高点,这分为两个方向,第一个方向是争夺未来人工智能的入口,包括家居的入口、汽车的入口等等,这些未来的入口扮演着比较重要的交互作用,例如Google的语音交互,百度的百度大脑。

  第二个方向是生态系统的竞争,入口很容易切换,那么就要通过生态提高切换成本,通过开源技术,通过推荐算法,当然也要依靠于物联网的延伸与发展。而像京东、当当这类的大公司,他们最大的竞争力在物流和海量的数据上,所以在技术上可以购买,但并不那么着急。

  小公司的主战场在垂直领域的应用,通过人工智能的浪潮来改进尚未完成移动化的行业。例如金融行业,它在人工智能时代的市场规模、空间应该会比移动时代更加广大;例如企业级的服务,现在在国内处在非常落后的状态。蒋涛说:“相对来说容易做的事情已经做完了,剩下的事情都是硬骨头,但我相信还会有跑出来大的公司,当然有数据的公司会更容易跑出来。”

  实际上,目前人工智能的应用和落地方式还极其有限。几乎所有人工智能的最新进展都是通过一种类型来完成:输入数据(A)快速生成简单的回应(B),举个例子:

  这么一个简单的输入 A 和输出 B 将改变许多行业,而构建由 AB 的技术被称为监督学习。AB 系统发展速度很快,这其中深度学习很大程度上受大脑的工作原理启发。但AB 系统距离科幻片中存在情感的机器人还差得很远,人类的智能也远远比 AB 系统高级得多。

  那么 AB 这个系统能做什么?关于其颠覆性影响,这里列一个法则:如果人类进行一项思考时间少于一秒的任务,那么不远的将来或许我们能用人工智能自动化完成这项任务。

  百度首席科学家吴恩达表示,人们在人工智能应用方面已经做了很多有价值的研究:在监控视频中检测可疑行为、汽车即将撞到行人时自动急刹车、自动删除网上的黄暴内容,上述任务均可在一秒之内完成。当然,这些技术更适合与大的产业业务相结合。

  互联网实现了基础设施可以跑、数据可以连,人工智能其实在另外一个维度上提升了我们整个的应用效率,它试图解决的是生产资料及劳动力上的问题。人工智能是产业智能化升级的强大工具,正在改变包括通信、医疗、教育等在内的所有领域。

  通信网络一般有两大任务,一个是网络的控制,一个是网络的管理和维护。网络控制就是怎么样在一个通信网络中进行有效地资源调度,从而提高网络的使用效率,更好地服务于用户。网络管理和维护就是准确理解网络需求,进行最优化的网络设计及部署;并能够实时感知网络状况,及时排除故障。而人工智能会使得未来的通信网络越来越不需要人,整个网络的控制基本是全自动的,只需要很少的专家参与就可以把整个通信网络的事情全部搞定。

  李彦宏在介绍百度人工智能在医疗领域的应用时,提到四个层次,分别是O2O服务、智能问诊、基因分析与精准医疗、新药研发。

  第一个层次:百度医生现在已经有50万的医生参与咨询,累计有800万人通过百度医生平台来获得相关的医疗服务。

  第二个层次:在智能问诊的小测试中,百度医生的诊断和北大国际医院的医生诊断,在80%的情况下是一致的,而且它可能在一些比较罕见的情况下表现更好。当然这些技术除了对大量的医疗知识进行机器学习外,也需要对病人表述的理解能力不断地提升。

  第三个层次:用基因来进行治病,最大的一个问题是大多数已知的基因导致的疾病都是单基因导致的,而这些病又大多是罕见病,大多常见病是多基因导致的。通过大量的计算,人工智能可以帮助医生搞清楚一个病是由哪些基因共同作用导致的。

  第四个层次:今天已知的、有可能形成药的小分子化合物大概是10的33次方那么多,这可能比全宇宙所有的原子加起来还要多。这样的一个量,怎样用它的分子式跟产生疾病的蛋白去合在一起,用来治病?怎样对未知的那些分子式进行大量的筛选,找到有效的新药?计算机科学、人工智能能够在这方面有所帮助。

  教育行业其实是一个试错成本非常高的行业,谁也不会拿孩子的成绩来做实验。医疗行业同样如此,的确人工智能可以在图像识别及诊断分析上给出建议,不过一旦出现医疗纠纷或因此而耽误了病人的病情,责任由谁来承担。

  另一个方面,这两个行业决策链条很长。它涉及的利益方很多,教育行业有学校、老师、家长、学生,在医疗行业就是医院、医生、病人。同时,这两个行业又是国家相对高度管制的行业。

  德联资本合伙人贾静表示,无论教育及医疗这两个行业有多少困难,资本还是非常关注。因为为教育及健康买单的用户,付费意愿及能力都非常强。这条路虽然曲折,但前途特别光明。

  实际上,教育行业要比医疗行业走得更靠前一些。目前在教育行业,已经有许多人工智能技术应用。比如人工智能深度参与到教、学、练、测、评的环节中,加快个性化教学的进程。但这需要积累大量真实有效的数据,谁能在整个教育环节积累到足够多的数据就有可能跑到前面。

  另一方面,教育行业一直想解决的问题是如何在供给侧做到规模又经济,老师该怎么培训和管理。那么人工智能介入教育行业,以前由老师来解决的问题,可能70%-80%由人工智能来解决。这就从生产成本上进行了改革,根本上解决了生产资料和劳动力的分配问题,而不只是交易成本最小化。所以人工智能带给行业的变革,要比移动互联网大得多。

  几年前出来的一些人工智能公司,技术发展已经相对成熟,比如科大讯飞,当年刚出来做的产品并不是那么流畅,但现在做得已经不错了。所以,技术差别不大的情况下,想要从技术上突破还是比较困难的,那就需要找到一个能够激发用户极致体验的点,看用户的体验是不是超过了用户对产品的期待。

  比如做语音命令,亚马逊Echo的一系列产品,拿到中国后就变成了纯音响,用户觉得这和漫步者差不多,它产生不了「哇」的这种感受,没有这些感受就没有办法转换成购买。一旦归类错了,大家不会考虑花更多的钱来买一个同类的产品。

  华创资本合伙人熊伟铭表示,在To C领域可以突破的将会是无人车,但会涉及到监管问题。政府是否允许无人车在公路上跑,出了事故是算机器的责任还是人的责任,人们会有一些常识性的担心。人类出于本能,对同类的信心要远远超出那些我们不了解其原理的事物。比如在医疗领域,虽然医生资源十分短缺,但依然不会允许机器给人看病。没有数据能证明机器的误诊率和医生的误诊率是不一样的,也阻碍了它进一步的发展及商用化。

  *1896年1月20日,一名叫沃尔塔阿诺尔德的英国人因违反限速规定而被处以罚款,成为世界上第一个因超速而被罚的汽车司机。当时他的车速只有13公里/时。到1896年「红旗法」被废止之前,英国对汽车的研制几乎处于停滞状态,在英国汽车发展史上留下了可悲的一页。

  这个鸿沟不是不可能逾越,而是需要很长的周期。就像汽车确实比马车更先进,但也经历了1865年英国议会针对蒸汽汽车制订的「红旗法案」这种看起来很荒唐的阶段,而未来无人车可能要经历一样的道路。这其中,除了信心,制度监管要占60%的因素。比如现在是不允许无人车在公路上运行,无论这辆无人车做了多少实验,比如医疗领域,数据不能出医院这一类法规还是大量存在。

  如果无人车这么难的事都实现了,可能包括看病或者政府的行政事务会慢慢放开。创业者要找一个行政环节最弱的点先切入,慢慢到一些行政壁垒很高的市场中去。

  熊伟铭是也最早看移动互联网领域的投资人之一,他说:“现在无人车的发展已经非常了不起了,这可能还只是一个小开始,但它发展到中期可能已经超过了移动互联网的小高峰。”虽然人工智能大潮可能不会像移动互联网这么密集地爆发,但会比移动互联网持续时间更长,一波接一波,发展到最后,这个领域会有巨大的成长和收获。

  在此他也给创业者提出建议,无论创业者进入到To B还是To C的领域都要选好市场及切入点,因为在机器学习上,它解决的是提高内部效率的问题。“你会活得更好一点,但这并不能改变你所从事的行业或领域的市场大小。原来需要100个人干的事现在只需要10个人,但是一个公司能解决1000人的问题,那你加上人工智能的技术也只能解决那1000人的问题,只不过原来能赚10元,现在能赚100元。”

  在这场讨论中,我们还得出以下结论:目前人工智能虽处于寒武纪的大爆发阶段,但也很可能再度面临寒潮。具体来说,人工智能可能会面临这五大考验:

  目前人工智能在学习上遵循的理论依然是上个世纪80年代提出的,人们并没有从本质上理解人类的学习原理,从监督学习到无监督学习的方法还在探索。如果将人工智能比作建造太空火箭,计算能力和数据是燃料,理论就是发动机。如果你有许多燃料但只拥有小功率发动机,你的火箭大概无法飞离地面。如果你拥有大功率发动机但只有一点点燃料,你的火箭即使飞上天也无法进入轨道。

  目前的人工智能技术多数都要依靠形态匹配,在监督式学习下,输入训练数据,每组训练数据有一个明确的标识或结果。人们将预测结果与「训练数据」的实际结果进行比较,不断调整预测模型,直到模型的预测结果达到一个预期的准确率。

  而无监督学习中,计算机无需人类帮助的情况下,像人类一样自己学习知识。计算机并不被告知怎么做,而是采用一定的激励制度来训练机器人培养出正确的分类。无监督学习方式是机器人工智能发展的关键技能之一。“目前朝着良性的趋势发。


m6米乐主页 上一篇:当我们在谈论人工智能的时候 它是否真实存在? 下一篇:人工智能商业化加速“掘金”
新闻资讯 m6米乐主页

版权所有:m6米乐主页网页版(M6·中国)m6米乐平台网址 Copyright @ 2016 All rights reserved.

客服热线:400-8570288